

Energy Efficiency Potential for Data Centers

Fourth Annual California Climate Change Conference Sacramento Convention Center September 11th, 2007

Eric Masanet, Ph.D.

Energy Analysis Department Environmental Energy Technologies Division

Ernest Orlando Lawrence Berkeley National Laboratory

Background (PIER)

California Energy Commission Public Interest Energy Research High-tech Buildings Project Objectives

- Research, develop, and demonstrate, innovative energy efficient technologies
- 10-year initiative focusing on high-tech industries e.g. data centers
- Help move the market to more efficient technologies
- Research and demonstration projects include technology transfer

Background (EPA)

U.S. EPA ENERGY STAR® Report to Congress on Server and Data Center Energy Efficiency Public Law 109-431

- Purpose: assess energy impacts on and from datacenters, identify energy efficiency opportunities, and recommend strategies to drive the market for efficiency
- Goals:
 - Inform Congress & other policy makers of important market trends, forecasts, opportunities
 - Identify and recommend potential short and long term efficiency opportunities and match them with the right policies
 - Identify additional strategic research <u>outside the</u> <u>scope</u> of the report
- Extensive industry input through public workshop and review of draft report

The significance of data centers

- Critical national infrastructure
- Data centers are energy intensive facilities:
 - —Typical facility ~ 1MW, but can be >20 MW
 - —Data centers consumed 1.5% of total U.S. electricity in 2006 (61 billion kWh)
 - Around \$4.5 billion in electricity costs
 - Equivalent to electricity use of 5.8 million U.S. households
 - Around 39 million metric tons of CO₂ (MMTCO₂) emissions
- Data centers in California:
 - Estimated data center load of 400-500 MW in PG&E territory alone
 - A 400-500 MW data center load would account for around 2% of total California electricity generation (2005)
 - PG&E represents ~33% of California electricity sales

Historical data center energy use

U.S. data center electricity use by end-use component

Source: U.S. EPA (2007). Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431.

Growth in data center energy use

- U.S. data center electricity use is projected to grow to over 100 billion kWh/year over the next five years
 - —Equivalent to 2.5% of total U.S. electricity use
 - —Around \$7.4 billion in electricity costs
 - —Around 68 MMTCO₂
- Similar growth is likely to occur in California
- Significant data center building boom, partly due to power and cooling constraints in existing facilities

Growth in power density

LBNL data center benchmarking results

Source: Tschudi and Fok (2007). Best Practices for Energy Efficient Data Centers. ASHRAE Winter Meeting. Dallas, TX, January 31.

Improvement potential

Assessment of energy efficiency opportunities for data centers:

- Modeling of energy use and energy efficiency improvement potential for U.S. data centers
 - Bottom-up modeling of component energy use for both IT and infrastructure systems
 - Based on measured data and observed trends
 - Scenario analysis aligned with realistic changes to technologies and practices
- 2. Identification of key barriers to energy efficiency
- 3. Key recommendations for voluntary programs and incentives to improve energy efficiency

Modeling and scenario analysis

Historical and projected electricity use of U.S. data centers

Source: U.S. EPA (2007). Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431.

Key barriers to energy efficiency

- Lack of efficiency definitions for equipment and data centers
 - Service output difficult to measure, varies among applications
 - —Need for metrics and more data: How do we account for computing performance?
- Split incentives
 - —Disconnect between IT and facilities managers
- Risk aversion
 - Fear of change and potential downtime energy efficiency perceived as a change with uncertain value and risk
- Lack of energy monitoring
- Information/training barriers

Key recommendations

Public Law 109-431 recommendations:

- Standardized performance measurements for IT equipment and data centers
 - Development of benchmark/metric for data centers
 - Provides opportunity to compare and measure impacts of changes made to facility
 - —ENERGY STAR label for servers
 - Servers are key driver of data center energy use
 - Create a standard way to measure server energy efficiency performance
- Government leadership
 - Publicly report energy performance of data centers
 - —Conduct energy efficiency assessments, all data centers in 2-3 years
 - —Implement best practices in all data centers

Key recommendations (continued)

Public Law 109-431 recommendations (continued):

- Private Sector Challenge
 - CEOs conduct energy efficiency assessments (e.g., via DOE Save Energy Now), implement measures, and report performance
- Information on best practices
 - Raise awareness and reduce perceived risk of energy efficiency improvements in datacenter
 - Government partner with private industry: case studies, best practices
- Research and development
 - Develop technologies and practices for datacenter energy efficiency (e.g., hardware, software, power conversion)

Summary

- Growing energy use of data centers is a concern for government, companies, utilities
 - —Concerns are particularly relevant to California
- However, data centers are a key energy efficiency and climate change mitigation opportunity
- Achieving this energy efficiency potential will require coordinated initiative involving many stakeholders to provide opportunities and address barriers
- Much work is underway, but great potential remains
 - Industry is responding with improved efficiency components, systems, strategies, and partnerships
 - Federal government is actively working to develop metrics and specifications for energy efficiency in data centers and servers

Research sponsors

- California Energy Commission Public Interest Energy Research (PIER) Program
- United States Environmental Protection Agency ENERGY STAR® Program
- Pacific Gas & Electric Company

"Energy Efficient Digital Networks"

- A set of energy efficiency research projects all with theme of digital networks
- Proposed in 2005 funded in 2007 by California Energy Commission Public Interest Energy Research (PIER) Program
- Covers both IT and CE products
 - Working with
 - Academia
 - Individual companies
 - Industry standards organizations
 - ENERGY STAR

http://efficientnetworks.lbl.gov/

Bruce Nordman bnordman@lbl.gov 510-486-7089

For further information

- LBNL High-Performance Buildings for Hi-Tech Industries website: http://hightech.lbl.gov/
- U.S. EPA Enterprise Server and Data Center Energy Efficiency Initiatives website (including Public Law 109-431 report):

http://www.energystar.gov/datacenters

• LBNL Energy Efficient Digital Networks project website:

http://efficientnetworks.lbl.gov/

Contacts:

Eric Masanet (510)486-6794 ermasanet@lbl.gov Bill Tschudi (510)495-2147 wftschudi@lbl.gov

Rich Brown (510)486-5896 rebrown@lbl.gov